A Three-Layered Approach to Facade Parsing
نویسندگان
چکیده
We propose a novel three-layered approach for semantic segmentation of building facades. In the first layer, starting from an oversegmentation of a facade, we employ the recently introduced machine learning technique Recursive Neural Networks (RNN) to obtain a probabilistic interpretation of each segment. In the second layer, initial labeling is augmented with the information coming from specialized facade component detectors. The information is merged using a Markov Random Field. In the third layer, we introduce weak architectural knowledge, which enforces the final reconstruction to be architecturally plausible and consistent. Rigorous tests performed on two existing datasets of building facades demonstrate that we significantly outperform the current-state of the art, even when using outputs from earlier layers of the pipeline. Also, we show how the final output of the third layer can be used to create a procedural reconstruction.
منابع مشابه
Beyond Procedural Facade Parsing: Bidirectional Alignment via Linear Programming
We propose a novel formulation for parsing facade images with user-defined shape prior. Contrary to other state-of-the-art methods, we do not explore the procedural space of shapes derived from a grammar. Instead we formulate parsing as a linear binary program which we solve using dual decomposition. The algorithm produces plausible approximations of globally optimal segmentations without gramm...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملDeepFacade: A Deep Learning Approach to Facade Parsing
The parsing of building facades is a key component to the problem of 3D street scenes reconstruction, which is long desired in computer vision. In this paper, we propose a deep learning based method for segmenting a facade into semantic categories. Man-made structures often present the characteristic of symmetry. Based on this observation, we propose a symmetric regularizer for training the neu...
متن کاملبررسی مقایسهای تأثیر برچسبزنی مقولات دستوری بر تجزیه در پردازش خودکار زبان فارسی
In this paper, the role of Part-of-Speech (POS) tagging for parsing in automatic processing of the Persian language is studied. To this end, the impact of the quality of POS tagging as well as the impact of the quantity of information available in the POS tags on parsing are studied. To reach the goals, three parsing scenarios are proposed and compared. In the first scenario, the parser assigns...
متن کامل